Skip to Main Content

Tellurium (Te): Metalloids

Tellurium (Te)

What is Tellurium?

Tellurium (Te), semimetallic chemical element in the oxygen group (Group 16 [VIa] of the periodic table), closely allied with the element selenium in chemical and physical properties. Tellurium is a silvery white element with properties intermediate between those of metals and nonmetals; it makes up approximately one part per billion of Earth’s crust. Like selenium, it is less often found uncombined than as compounds of metals such as copper, lead, silver, or gold and is obtained chiefly as a by-product of the refining of copper or lead. Continue reading from Encyclopedia Britannica

The History

Tellurium was discovered in 1783 by Franz Joseph Müller von Reichenstein at Sibiu, Romania. He became intrigued by ore from a mine near Zalatna which had a metallic sheen and which he suspected was native antimony or bismuth. (It was actually gold telluride, AuTe2.) Preliminary investigation showed neither antimony nor bismuth to be present. For three years Müller researched the ore and proved it contained a new element. He published his findings in an obscure journal and it went largely unnoticed.

In 1796, he sent a sample to Martin Klaproth in Berlin who confirmed him findings. Klaproth produced a pure sample and decided to call it tellurium. Rather strangely, this was not the first sample of tellurium to pass through his hands. In 1789, he had been sent some by a Hungarian scientist, Paul Kitaibel who had independently discovered it. Continue reading from The Royal Society of Chemistry

Tellurium Facts

Tellurium is often used to improve the machinability of copper and stainless steel. It’s used to make blasting caps, added to cast iron and used in ceramics. Adding tellurium to lead improves the strength and hardness of the metal and decreases corrosion. Tellurium is usually found as calaverite, the telluride of gold, and also combined with other metals. It is found commercially in electrolytic refining of blister copper from anode muds during the process. Continue reading from LiveScience

Chart of Elemental Properties for Tellurium

Watch a Video on Tellurium

Check out our Science Database or a Science Book from our Collection

Link to Science Reference Center Database
Link to Elemental by Tim James in the Catalog
Link to The Periodic Table: A Very Short Introduction by Eric Scerri in the Catalog
Link to Eureka by Chad Orzel in the Catalog
Link to Periodic Tales by Hugh Aldersey Williams in Hoopla
Link to Superheavy by Kit Chapman in the Catalog
Link to Absolutely Small by Michael D. Fayer in the Catalog
Link to Seven Elements That Changed The World by John Browne in the Catalog
Link to The Elements by Theodore W. Gray in the Catalog
Link to 10 Women Who Changed Science, And The World by Catherine Whitlock in the Catalog
Link to From Arsenic to Zirconium by Peter Davern in the Catalog
Link to Chemistry Demystified by Linda Williams in the Catalog
Link to The Disappearing Spoon by Sam Kean in the Catalog

Return to the Periodic Table of Elements Resource Guide Series