Solar energy, radiation from the Sun capable of producing heat, causing chemical reactions, or generating electricity. The total amount of solar energy incident on Earth is vastly in excess of the world’s current and anticipated energy requirements. If suitably harnessed, this highly diffused source has the potential to satisfy all future energy needs. In the 21st century solar energy is expected to become increasingly attractive as a renewable energy source because of its inexhaustible supply and its nonpolluting character, in stark contrast to the finite fossil fuels coal, petroleum, and natural gas.
The Sun is an extremely powerful energy source, and sunlight is by far the largest source of energy received by Earth, but its intensity at Earth’s surface is actually quite low. This is essentially because of the enormous radial spreading of radiation from the distant Sun. A relatively minor additional loss is due to Earth’s atmosphere and clouds, which absorb or scatter as much as 54 percent of the incoming sunlight. The sunlight that reaches the ground consists of nearly 50 percent visible light, 45 percent infrared radiation, and smaller amounts of ultraviolet and other forms of electromagnetic radiation.
The potential for solar energy is enormous, since about 200,000 times the world’s total daily electric-generating capacity is received by Earth every day in the form of solar energy. Unfortunately, though solar energy itself is free, the high cost of its collection, conversion, and storage still limits its exploitation in many places. Solar radiation can be converted either into thermal energy (heat) or into electrical energy, though the former is easier to accomplish. Continue reading from Encyclopedia Britannica
Solar radiation is light – also known as electromagnetic radiation – that is emitted by the sun. While every location on Earth receives some sunlight over a year, the amount of solar radiation that reaches any one spot on the Earth’s surface varies. Solar technologies capture this radiation and turn it into useful forms of energy. There are two main types of solar energy technologies—photovoltaics (PV) and concentrating solar-thermal power (CSP).
You're likely most familiar with PV, which is utilized in solar panels. When the sun shines onto a solar panel, energy from the sunlight is absorbed by the PV cells in the panel. This energy creates electrical charges that move in response to an internal electrical field in the cell, causing electricity to flow.
Concentrating solar-thermal power (CSP) systems use mirrors to reflect and concentrate sunlight onto receivers that collect solar energy and convert it to heat, which can then be used to produce electricity or stored for later use. It is used primarily in very large power plants.
Solar energy technology doesn’t end with electricity generation by PV or CSP systems. These solar energy systems must be integrated into homes, businesses, and existing electrical grids with varying mixtures of traditional and other renewable energy sources. A number of non-hardware costs, known as soft costs, also impact the cost of solar energy. These costs include permitting, financing, and installing solar, as well as the expenses solar companies incur to acquire new customers, pay suppliers, and cover their bottom line. For rooftop solar energy systems, soft costs represent the largest share of total costs. Continue reading from US Office of Energy Efficiency & Renewable Energy
How Do Solar Panels Work? The Science of Solar Explained (Solect)
The Science Behind Commercial Solar Energy (Verogy)
How Do Photovoltaics Work? (Science)
How Do Solar Panels Work? The Science Behind Solar Power Generation (Energy Sage)
How Do Solar Panels Work? (Live Science)
How Solar Panels Work: Solar Power Science Explained (Eco Watch)
The Science Behind Solar Energy (Solar Power Guide)
How Does Solar Power Work? (Scientific American)
The Reality Behind Solar Power’s Next Star Material (Nature)