Gadolinium has a shiny metallic luster with a slight yellowish tint. It is both ductile and malleable. Ductile means capable of being made into wires. Malleable means capable of being hammered or rolled into thin sheets. It has a melting point of 1,312°C (2,394°F) and a boiling point of about 3,000°C (5,400°F). Its density is 7.87 grams per cubic centimeter.
Few elements are as strongly magnetic as gadolinium. It also has the highest neutron-absorbing ability of any element. A piece of gadolinium stops neutrons better than any other element. The abundance of gadolinium in the Earth's surface is estimated at about 4.5 to 6.4 parts per million. That would make it one of the most abundant of the rare earth elements. Continue reading from Chemistry Explained
Gadolinium was discovered in 1880 by Charles Galissard de Marignac at Geneva. He had long suspected that the didymium reported by Carl Mosander was not a new element but a mixture. His suspicions were confirmed when Marc Delafontaine and Paul-Emile Lecoq de Boisbaudran at Paris reported that its spectral lines varied according to the source from which it came. Indeed, in 1879 they had already separated samarium from some didymium which had been extracted from the mineral samarskite, found in the Urals. In 1880, Marignac extracted yet another new rare earth from didymium, as did Paul-Émile Lecoq de Boisbaudran in 1886, and it was the latter who called it gadolinium. Continue reading from Royal Society of Chemistry
Gadolinium compounds are used as phosphors in color televisions and gadolinium yttrium garnets have application in microwaves . The metal has unusual superconductive properties. The resistance and workability of iron and chromium can be improved with as little as 1 percent gadolinium. Due to its low noise characteristics, gadolinium ethyl sulfate has been explored for duplicating the performance of amplifiers.
The rare earth metal has special Curie temperature above which ferromagnetism vanishes, giving rise to the potential that it could be used as a magnetic component that can sense hot and cold. Continue reading from LiveScience