Skip to Main Content

Dysprosium (Dy): Lanthanides

Dysprosium (Dy)

What is Dysprosium?

Dysprosium has a metallic appearance with a shiny silver luster. The metal is so soft it is easily cut with a knife.  Dysprosium is relatively unreactive at room temperatures. It does not oxidize very rapidly when exposed to the air. It does react with both dilute and concentrated acids, however. For example, it reacts with hydrochloric acid to form dysprosium trichloride.

Experts estimate that no more than about 8.5 parts per million of dysprosium occur in the Earth's crust. Studies of stony meteorites have found about 0.3 parts per million of dysprosium. Continue reading from Chemistry Explained

The History

Dysprosium was discovered in 1886 by Paul-Émile Lecoq de Boisbaudran in Paris. Its discovery came as a result of research into yttrium oxide, first made in 1794, and from which other rare earths (aka lanthanoids) were subsequently to be extracted, namely erbium in 1843, then holmium in 1878, and finally dysprosium. De Boisbaudran’s method had involved endless precipitations carried out on the marble slab of his fireplace at home.

Pure samples of dysprosium were not available until Frank Spedding and co-workers at Iowa State University developed the technique of ion-exchange chromatography around 1950. From then on it was possible to separate the rare earth elements in a reliable and efficient manner, although that method of separation has now been superseded by liquid-liquid exchange technology. Continue reading from Royal Society of Chemistry

Dysprosium Facts

While there is not currently a wide range of applications for dysprosium, properties such as its thermal neutron absorption cross-section and high melting point could result in metallurgical uses in nuclear control applications and for alloying with special stainless steels.

Dysprosium oxide-nickel cement plays a role in cooling nuclear reactor rods. Even under prolonged neutron bombardment, this cement absorbs neutrons readily without swelling or contracting.  Continue reading from LiveScience

Chart of Elemental Properties for Dysprosium

Watch a Video on Dysprosium

Check out our Science Database or a Science Book from our Collection

Link to Science Reference Center Database
Link to Elemental by Tim James in the Catalog
Link to The Periodic Table: A Very Short Introduction by Eric Scerri in the Catalog
Link to Eureka by Chad Orzel in the Catalog
Link to Periodic Tales by Hugh Aldersey Williams in Hoopla
Link to Superheavy by Kit Chapman in the Catalog
Link to Absolutely Small by Michael D. Fayer in the Catalog
Link to Seven Elements That Changed The World by John Browne in the Catalog
Link to The Elements by Theodore W. Gray in the Catalog
Link to 10 Women Who Changed Science, And The World by Catherine Whitlock in the Catalog
Link to From Arsenic to Zirconium by Peter Davern in the Catalog
Link to Chemistry Demystified by Linda Williams in the Catalog
Link to The Disappearing Spoon by Sam Kean in the Catalog

Return to the Periodic Table of Elements Resource Guide Series